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The minimal replacement operator of direct Poincar6 gauge theory converts 
Minkowski space-time to a new space U4 with curvature and torsion. Explicit 
representations of the connection and curvature forms of U4 are obtained. This 
enable us to prove that the Ricci lemma is always satisfied (U4 is a Riemann- 
Cartan space) and that the holonomy group of U4 is the component of the 
Lorentz group that is continuously connected to the identity. A specific form of 
the "free field" Lagrangian for local action of the Poincar6 group is studied. 
Although the Lagrangian is independent of torsion, spin currents are supported 
by a system of algebraic relations between spin current and torsion. The field 
equations for the translation part of the Plo gauge fields are shown to be relations 
between the Ricci curvature and the total momentum-energy tensors, although 
these equations have nontrivial skew-symmetric parts whenever torsion is present. 
If the spin currents vanish and the total momentum-energy tensor is symmetric, 
Einstein's equations of general relativity with cosmological constant obtain as 
exact rather than approximate results. This leads to explicit evaluations of all 
coupling constants for the P~o sector, and to the fact that any solution of Einstein's 
field equations has the proper orthochronous Lorentz group as holonomy group. 
Direct gauge theory for the Poincar~ group thus provides a simple and explicit 
method of introducing gravitational effects whenever an adequate description 
of matter and internal gauge structures is known on Minkowski space. An 
alternative system of field variables is shown to lead to a decomposition of the 
gravitational equations that is analogous to the decomposition of the Klein- 
Gordon equation via Dirac spinors. 

1. I N T R O D U C T I O N  

A d i r e c t  g a u g e  t h e o r y  fo r  t h e  P o i n c a r ~  g r o u p  was  g i v e n  in  p a p e r  I 

( E d e l e n ,  1985a)  as a spec i f i c  s i m p l i f i c a t i o n  o f  t h e  g e n e r a l  s t r u c t u r e  o f  g a u g e  

t h e o r y  b a s e d  o n  o p e r a t o r - v a l u e d  Lie  c o n n e c t i o n s  ( E d e l e n ,  1984).  T h i s  t h e o r y  

was  e x t e n d e d  in  p a p e r  I I  ( E d e l e n ,  1985b)  a n d  t h e  p r o b l e m  o f  g a u g i n g  a 

P o i n c a r ~  i n v a r i a n t  t h e o r y  w i t h  a n  i n t e r n a l  s y m m e t r y  g r o u p  was  e x a m i n e d  
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in paper III (Edelen, 1985c). (Explicit citation of equations from I, II, and 
III will be made by hyphenation with the appropriate Roman numeral.) 
Although all of these results turn out to be pertinent, the theory "sits on 
the fence" because a specific free field Lagrangian for the total gauge group 
has not been specified and the curvature structure of the resulting space-time 
manifold has not been adequately characterized. Both of these shortcomings 
is rectified in this paper. ,~ 

An analysis of the anholonomic structure induced on the space-time 
manifold U4 by minimal replacement is given in Section 2. This leads to 
an explicit representation of the holonomic components of the connection 
coefficients of U4, which are used in Section 3 to prove that the Ricci lemma 
holds for U4. The space-time manifold is therefore a Riemann-Cartan space, 
and this result obtains as a direct consequence of minimal replacement for 
the local action of the Poincar6 group. Section 4 develops a specific rep- 
resentation for the curvature tensor of U4, from which it follows that the 
holonomy group of U4 is the component of the Lorentz group connected 
to the identity element. This has far reaching implications, both theoretically 
and experimentally. 

The question of choosing the free field Lagrangian for the Poincar6 
compensating fields is faced in Section 5. We restrict consideration to 
Lagrangians that are at most quadratic in the derivatives of field quantities. 
Results established in III then show that the free field Lagrangian for the 
total gauge group (Poincar6 plus internal symmetry) is the sum of the free 
field Lagrangian for the Poincar6 group and the lifting of the free field 
Lagrangian for the internal symmetry group from Minkowski space to U4 
by means of the anholonomic bases generated by minimal replacement. 
Thus, if the appropriate free field Lagrangian for the internal symmetry 
group on Minkowski space is known, it is likewise determined on U4. In 
view of the lack of an experimental basis for the dependence of the 
Lagrangian on torsion, we take the free field Lagrangian to be independent 
of the torsion tensor. This does not mean that U4 is torsion free, for the 
torsion tensor is still very much in evidence. Thus, since the Einstein theory 
of gravity has only two coupling constants, the general relativistic gravita- 
tional coupling constant and the cosmological constant, a particularly simple 
choice for the free field Lagrangian is made that models the Einstein-Hilbert 
choice. 

Sections 6 and 7 derive the explicit resulting forms of the field equations 
for the translation and Lorentz compensating fields. The spin equations 
become exp!icit algebraic relations between the spin currents of the matter 
fields and the torsion fields of U4; there are no derivatives of torsion involved 
and hence things are greatly simplified. This shows that a free field 
Lagrangian that is independent of torsion still provides for a direct geometric 
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interpretation of intrinsic spin in terms of the torsion of U4. There is, 
however, only one coupling constant involved in the spin equations, namely, 
the coupling constant of general relativity, and its known value is such that 
the predicted torsion effects become experimentally negligible for ordinary 
matter. 

Necessary physical conditions for the reduction of U4 to a pseudo- 
Riemannian space-time are shown in Section 8 to be vanishing spin currents 
and vanishing antisymmetric part of the total momentum-energy tensor. 
These are exactly the conditions under which the Einstein field equations 
of general relativity were derived, and the field equations for the direct 
gauge theory of the Poincar6 group reduce exactly to the Einstein field 
equations in this case. This exact reduction also serves to determine the 
two coupling constants of the theory in terms of the general relativistic 
gravitational constant and the cosmological constant. There is an added 
payoff here, however, for we know that U4 has the Lorentz group as its 
holonomy group and hence any solution of the Einstein field equations has 
the Lorentz group as its holonomy group. Thus, parallel translation of any 
vector around a closed circuit is equivalent to a proper, orthochronous 
Lorentz transformation of the vector. 

2. ANHOLONOMIC STRUCTURES INDUCED BY MINIMAL 
REPLACEMENT 

Minimal replacement for the Poincar~ group [see (I-13) and (I-60)] 
applied to the natural bases {dx  ~, a~} on M4 gives 

~ ( d x ~ ) = B ~ = B j d x J = ( 6 ~ +  ,~ , k W) l~kx + Cj) dx  j (1) 

~ ( 0 , )  = b~ = b~ Oj (2) 

where 

b~B~k = i " i Ujb'k = 6k (3) 

Now, minimal replacement for P10 carries quantities from Minkowski space 
M 4 to a new space U 4 with the same coordinate cover and hence the natural 
bases {dx  i, 0i}. Accordingly, we may view the quantities {B i, b~} as gauge 
anholonomic bases for U4. Interpreted in this way, (1)-(3) give the following 
relations between the natural and anholonomic bases: 

d x ' =  b~i Bj, B ~= B j  dx  j (4) 

Oi = B~b;, bi = ~ 0j (5) 

Quantities in/-]4 referred to the anholonomic bases {B i, b~} will be designated 
by a superimposed "hat"  (^) and referred to as gauge anholonomic 
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components. We thus have 

Ol : Oli d x  i : ~i  Bi ,  

with 

E d e l e n  

v = v'O, = 3'b, (6) 

v /=  ~Jb~ (7) 

The simplest example of this occurs with regard to the metric structure 
of U4. The results given in (I-14) show that 

d S  2 = d[/g( hij d x  i @ dx;) = hoBi  @ B j -= go dx~ | dxj 

where 

We thus have 

go = BkhkmBs,  gO = b~khkmbS k (8) 

g0 = h0, ~0 = h 0 (9) 

that is, the gauge anholonomic components of  the metric on U4 are the 
components of the metric on M4. 

Next, we note that the differential system generated by the 1-forms B i 
[see (1-26)] is DB~ = Y/. When these equations are written out, we have 

dBi + ~ i = ~i W k  l~ i dx k ^ B j 

If  (4) is used, these equations become 

a r i k ~ i  dB~+ W ,  bkl,~2B ^ B  ~ (10) 

Equations (10) are, however, nothing more than the equations of structure 
of E. Caftan associated with the basis {Bill -< i < 4} for AI(U4). In view of 
the skew symmetry of the second set of terms on the le•hand side of (10) 
in the indices k, j ,  these equations serve to identify the anholonomic com- 
ponents of the connection coefficients on U4 by 

A a i A i  "~i 
F~k; = Wk l~ ;+  Yk;, Yrkj3 =0  (11) 

On the other hand, the connection 1-forms induced by minimal replacement 
have the evaluation 

ar i k A a  i m 
W k l ~ j  d x  = Wml~jB 

from which (10) were obtained, Comparison with (11) shows that all of  the 
Y's must be zero and that minimal replacement induces connection 
coefficients on U4 referred to the anholonomic basis generated by the B's 
and the b's. Thus, minimal replacement lifts all geometric quantities from 
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M4 up to U4, but the results are referred to the anholonomic bases generated 
by the B's and the b's. 

The relations between the connection components and their 
anholonomic resolutions are well known (Schouten, 1954): 

r~j= q r i ^ ~  ' OkB~ BkB) bpF qr + be 

Accordingly, when (11) is used with all of  the Y's set to zero, we obtain 

F~ki = ~ ' 'OkBf (12) Wk L~j + bp 

where we have set 

Lij  = h i l  PR'~ (13) p ~ct q ~ j  

Thus, the operation of minimal replacement for Plo induces a connection 
on U4 that is uniquely determined by the compensating 1-forms W e for 
the Lorentz sector and the distortion 1-forms B ~. 

Contrary to previous practices, (12) shows that the components of 
connection on U4 do not take their values in the Lie algebra of P~o. There 
is a partial correspondence, however, which we proceed to derive. First, it 
follows directly from (13) that 

i j i j _  v i L ~ L ~ g -  L~jL~k - C ~ L ~ g  (14) 

while (8), (11), (12), and (13) give 

L~(Jgk)j = O, L(~jg k)j = 0 (15) 

The six matrices {L~ l1 -< a -< 6} thus form a matrix representation of the Lie 
algebra of the Lorentz group on U4. The first set of  terms in the representation 
(12) of the connection coefficients on U4 thus take their values in the Lie 
algebra of Plo; it is just that the terms involving derivatives of the B~'s do 
not. 

This result is not a singular happenstance, for other algebraic structures 
have similar liftings to U 4, For instance, if (~flll-< i-<4} is a basis for the 
Dirac algebra on M4 and ~ is the corresponding spinor wave function, the 
results of I and III show that 

oa(?' O,aI ~) = ?'b~Dk aI t = trkDk xI t (16) 

where we have set 

trk = bk',l ' (17) 

It is then an easy matter to verify that 

(J Pi(]rj  At- o ' J  o "i = 2 g iq (18) 

and hence the (r's form a basis for the Dirac algebra on U4. 
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3. METRICITY OF T H E  GAUGE-INDUCED CONNECTION 

We now know that minimal replacement for Plo lifts Minkowski space 
to a new space U4 whose metric and connection are uniquely determined 
in terms of the compensating fields for the local action of P~o. This new 
space is subject to arbitrary smooth changes of coordinate covers, because 
of the local action of the translation subgroup, and admits matrix representa- 
tions of the Dirac algebra and the Lie algebra of L(4, R). Since both the 
metric and the connection are determined once the compensating fields are 
known, the question arises as to whether the Ricci lemma holds for U4. 

Let Vi denote the operation of covariant differentiation based on the 
connection of U4 given by (12). Following Schouten (1954), the metricity 
tensor of U4 is defined by 

Qk# = --Vkg~ (19) 

If this tensor vanishes on U4, the connection (12) is metric, in which case 
raising and lowering of indices commute with covariant differentiation and 
U4 is a Riemann-Cartan space. The problem is therefore that of substituting 
(8) and (12) into the right-hand side of (19) in order to compute the metricity, 
a lengthy and involved task. 

An alternative approach that is significantly simpler obtains from the 
observation that 

A 

Qkij = a p q BkBi B~ Qapq (20) 

where 
^ k i j Qapq = b abpb qQ~ij 

We now substitute (19) into (21) and obtain 

Oapq = - -Vagpq  

where 

(21) 

(22) 

A 
= bark  V a  k 

is the symbol for covariant differentiation based upon the anholonomic 
components of the connection. Accordingly, (9), (11), and (22) give 

Oapq = --b ka( Okhpq -- 2 W'~ l,~(~ hq)j ) = 0 (23) 

The metricity tensor of U4 thus vanishes. 
The connection induced on U4 by minimal replacement is metric, 

Vkgij = O, Vagpq = Vahpq = 0 (24) 

and /-/4 is a Riemann-Cartan space. 
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Previous works have used the Ricci conditions, Qijk = 0, as imposed 
conditions in order to obtain representations for the connection coefficients 
because they use a different metric tensor (see I, Section 1) and different 
anholonomic bases. Underlying these differences is the fact that previous 
works have not used the minimal replacement operator to induce the 
appropriate structure on U4; rather, the geometry is put in first by requiring 
U4 to be a Riemann-Cartan space, 2 and only afterwards are arguments by 
analogy used to introduce gaugelike constructs. The approach taken here 
is to start with the physics, as described by the Lagrangian for the matter 
fields on Minkowski space, and then simply allow the appropriate structures 
to unfold through the action of the minimal replacement operator induced 
by the local action of the Poincar6 group. We thus have significantly fewer 
mathematical assumptions and yet we obtain all of the necessary structure 
on U4 including the Ricci lemma without having to explicitly put it in as 
an independent system of conditions. 

4. CURVATURE CONSIDERATIONS 

We shall need certain relations between the holonomic and 
anholonomic components of the curvature tensor of U4. Following Schouten 
(1954), the curvature 2-forms of U4 are given by 

R i - ! O i  = d F } +  j - -  2 " ' g m j  d x k  ^ d x m  Fr ^ F~ (25) 

Let us set 

with 

We then have 

dx. 

"a  _ i a " 
R k m p  -- R k m j B i  blp (26) 

/ • a  l i ~ a  " a ^ a r p=ia,.k,npdxk Adx m, Fp=FrpBsdx  s 

and the Cartan equations of structure give 
~ a  ~ a  ~ a  ~ r  

R p = d I ' p + F r  ^ I ' p  

Now, (11) and (27) show that 
~ a  ct a F v = W lap 

and hence (I-21) gives 
" o  

R p  = 

2If  the  Y ' s  a re  r e t a i n e d  in (11),  the  resu l t ing  Q ' s  v a n i s h  i f  a n d  on ly  if  the  Y ' s  van i sh .  

(27) 

(28) 
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We now substitute this result into (26) and obtain 

R i m n j = O ' ~  I a R P h i  --  o~ i ~ m n * a p ~ ]  ~ a -  O m n L a j  

where the latter equality follows from (13). 
The representation of the curvature tensor of U4 in the form 

= O,, ,L~j (29) 

is of particular significance. We have already seen that {L~]I -< a <_ 6} forms 
a matrix representation of the Lie algebra of the Lorentz group on U4 [see 
(14)]. The space U4 has a much richer collection of admissible transforma- 
tions than just those generated by the local action of T(4) (coordinate 
transformations), however. We also have the frame and coframe transforma- 
tions generated by the local action of L(4, R). Thus, 0 = 0~1, and (I-31) give 

and hence 

'0 = '0=1. = LOL -1 

' ~ ~ ~ ~ ~ ( 3 0 )  
0,,,,, = Gt~O ~ O~x~ O'x----" 

Here, the G's  constitute the matrix representation of the adjoint action of 
L(4, R) on its Lie algebra that is defined by 

L1.L -1 = G~I~ 

In like manner, 'B=LB,  'b= bL -1 and (13) show that 

-x  O~X i OX q 
, i r P - -  - -  ( 3 1 )  
L~j = a,~L~q Ox p o,xJ 

Accordingly, (29), (30), and (31) show that the curvature tensor on U4 only 
responds to the coordinate changes achieved by local action of the transla- 
tion group, as indeed it must. 

Now that we know how the L~'s transform under the local action of 
Pao, we may proceed to compute its total covariant derivative: 

T 
V kL,~ = i ~ ~ m i i m okL~j-- Fk~ Lt~j-  Fk j L~, .  + Fk , .L~j  

Since the connection coefficients for the adjoint action of L(4, R) are given 
by (Rund, 1982; Edelen, 1984) 

r k~=  " ' W k  C~ 

a direct calculation using (12) and (14) shows that 

T 

VkL,~ 1 = 0 (32) 
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Thus, the L~'s form a covariant constant representation of the Lie algebra 
of L(4, R) on U4. 

It is clear from the  definition of the total covariant derivative that it 
agrees with the ordinary covariant derivative when acting on quantities that 
only respond to the general coordinate transformations generated by local 
action of T(4). Thus, since (II-32) shows that the metric tensor only responds 
to coordinate transformations, we have 

T 

V kgij = V kqU = 0 

Further, 

'Bj = L ~ B  k Oxm 'b} O'x' k - lm 
O~xj , -- OX k b m L j  

and use of (12) and (28) show that 

T 
VkB~ i m i "i .I = OkBj-- FkjBm + Fk,nBj = 0 

T 
Vkb} i i ~ "m i = Okbj+ Fk~bj -Fk jb~  = 0 

On the other hand, it is easily seen that 

VkB~ ~ O, Vkb~ ~ 0 

because the Bi's are 1-forms and the b~'s are vectors as far as coordinate 
transformations of U4 are concerned. Finally, we note that 

T T 
i i a i 

V kRmn j = V kRrnnj = ( V  kO mn) L a j  

when (29) and (32) are used. 
The known properties of the holonomy group of a manifold with a 

linear connection (Schouten, 1954, pp. 375ff; Hlavat2), 1959) show that the 
factorization given by (29) implies that the L~'s form a basis for the Lie 
algebra of  the holonomy group of U4. Accordingly, the holonomy group 
for the space U4, which obtains from minimal replacement for the Poincar6 
group, is the component of the Lorentz group that is continuously connected 
to the identity. The Lorentz group is thus always present as the holonomy 
group in the U4 of direct Poincar6 gauge theory, and this is true irrespective 
of whether U4 does or does not have vanishing torsion. In particular, the 
Lorentz group is the holonomy group for any gravitational theory that 
obtains via the Poincar6 gauge theory. 

The definition of the Ricci tensor and (29) give 
m ot m 

R o = R,, , j  = O,,,jL,~j (33) 
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and hence the scalar curvature R = g~R u has the evaluation 

~ ' ~ - ~  (34) R = O m i g  Lo~ j 

When (3), (8), and (13) are used, a straightforward calculation shows that 

h [ m h ' q f l  ~ 1 a h r s -  R = v a  --r vm,-~,.- - -a l  (35) 

where a~ is the /'1o invariant given in II. 
The other independent contraction of the full curvature tensor has the 

evaluation 

V m n  i a i = R m n i  = O m . L , ~ i  = 0 (36) 

because (13) gives 

Lo,  i = v a . a p ~ i  (37) 

5. CHOICE OF THE FREE FIELD LAGRANGIAN 

The theory starts with the Lagrangian for the matter fields to which 
the operation of minimal replacement is applied in order to obtain the 
Lagrangian BL which is invariant under the local action of the Poincar6 
group [remember that B = det(B) = (_g)1/2]. This is only part of the story, 
for we still have to choose the invariant "free field" Lagrangian V for the 
local action of the total group Plo x G, where G is the internal symmetry 
group of the matter fields. If we follow the customary procedure of  restricting 
the Lagrangian to be at most quadratic in the derivatives of the field variables, 
the results established in II and III show that 

V = B(np  + n o )  (38) 

Here, 

I lp  = ko+  kite 1 + k2(0~1)2+ k30t2+ k4fll + k s P l  + k6"r/1 (39) 

is a Plo-invariant scalar-valued function [see (II-85)], while (1II-20) gives 
a b ik "m c IIo = U(g~, Nu) = kTNug g3 Nkmkbc (40) 

Here, we have used N's  instead of O's to denote the components of the 
curvature 2-forms formed from the compensating 1-forms for the local 
action of the internal symmetry group G in order that they not be confused 
with curvature components associated with P~0. The problem thus boils 
down to choosing the eight coupling constants k0, k l , . . . ,  k7. 

The required choices cannot be made in a conceptual vacuum, and 
hence it is useful at this point to write out the pertinent field equations 
developed in I and II. Since our primary concern is with deciding between 
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the various terms in (39), we shall ignore for the moment the field equations 
given in III  for the matter fields and the compensating fields of the internal 
symmetry group. We thus have the constitutive relations 

L~A = oL/OyA, yA = ./~ ( d i c t A )  (41) 

G~=av/a:~, Hg=(OV/aO~)l~ (42) 

Z j :  i A i ( 4 3 )  LAYj -- ~jL 

S~ = (0 V/04~ ~)1 o,z = (0 V/OB~)] o,z (44) 

where the last equality follows from 

B ~, = a~+ wTt~xJ+ ~ 

The field equations for the Plo gauge fields then take the form 

/j ~ m /j d { G k / X u } - W  l,~k ^{G. , /xo}=(S~-BbjTJk) tX~,  1 - < k - 4  (45) 

d{H~t%.} - WYCyfla ^ {H~ U~j} = BbkLAmaBal 2 , i  k a B[.i.i 

- Bkl,~'~ ^ { G~/xo} 1-<c~_<6 
(46) 

The first thing we note is that the Poincar6 gauge fields contribute an 
orbital spin current 

-Bkl,~'~ ^ { G~/xij} 

unless the G's vanish. This can be the case, in view of (42), only if l ie  does 
not depend on the components of the Cartan torsion. In like manner, there 
seems to be no definitive experimental evidence that physical space-time 
has nonvanishing Cartan torsion, and hence a torsion contribution to the 
free field Lagrangian would appear to be beyond experimental verification. 
Accordingly, since only Pl and rla depend on the torsion (see II, Section 
5), we take 

k5 = k6 = 0 (47) 

Careful note should be taken that (47) does not assume that the Cartan 
torsion vanishes; we have only assumed that the free field Lagrangian does 
not depend on the Cartan torsion. 

We have already seen that oq = R, where R is the curvature scalar of 
U4. If  the Cartan torsion vanishes, then R is the scalar curvature of a 
pseudo-Riemannian manifold, in which case B R  = ( - g ) I / 2 R  is known to 
be the Lagrangian function for gravitation in general relativity. Although 
renormalization considerations might suggest that there should be terms in 
Ill, that are quadratic in the curvature components, these terms would have 
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to be quite small relative to the R term in order not to lead to predictions 
in conflict with the experimental basis for general relativity. Accordingly, 
it seems useful to examine the case where the free field Lagrangian is given 
by 

V = B(ko+ k , a ,  + U) (48) 

6. THE TRANSLATION EQUATIONS 

We first take up the field equations (45) that obtain from variation of 
the compensating fields for the translation sector. With V given by (48), 
(42) shows that 

o :0 
The field equations (45) thus reduce to 

= Bbj T k (49) 

The problem thus boils down to evaluating the S's. 
Because V has the form BII, (44) gives 

S~ = B(IIb~ + oII/ OB~) (50) 

Now, II depends on the B's only through the b's, and hence 

ob~, /oBk= ,,, ~ - b k b ,  

gives 
i - -  i m r r Sk - Bb , . (H 6k - bk OH/ Obm) (51) 

We now note that H = He + U, where 

Hp = ko+ k,b~b~'O'~,,l,~sah rs (52) 

and that U depends on the b's only through the quantities gO [see (40)]. 
A direct calculation using the skew symmetry of 

o~ l i h mJ 0 u and -~ m.. 

in the indices i, j then yields 

i I i A 1 A s" S~ = Bbj k o 6 k - 2 k l ( R ~ - ~ R h ~ ) h  ~-+ 

We now substitute (53) into (49) and obtain 

T { = ko6Jk - 2 k , ( / ~  - �89  sj q- 

1 0 ( B U )  B~B~hbk" [ (53) 
J B Og,~ 

1 a ( B U )  j b 
, B,B~ hbk (54) 

B ag~ 
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The first thing to be noted is that these equations refer to tensorial 
quantities resolved on the anholonomic bases generated by the B's and the 
b's. As such, they are scalar equations on U4, and hence are the easiest 
form of the field equations to use when it comes down to actually obtaining 
solutions. On the other hand, identification is only directly available when 
the field equations are written in terms of tensors referred to holonomic 
coordinate covers. Thus, if we lower the j index by multiplying by hj~, and 
then use (7), the field equations become 

__2kl (Rab__lRgab)+kogab = TkhjiB,~Bbi k i 
10(BU) 
B Ogrs 

- -  gragsb = Tab (55) 

The tensor Tab is clearly the the total momentum-enery tensor since it 
is the sum of  the momentum-energy tensor for the matter fields and that 
for the internal symmetry group G. Thus, if we set 

K = - (2kl )  -1, h = Kko (56) 

then (55) assumes the form 

Ro - 1 R g  o + hgij = Kz~ (57) 

These equations are a bit misleading, however, for we are in a Riemann- 
Cartan space U4 with torsion, and hence R o is not symmetric. Thus, if we 
take the symmetric and skew-symmetric parts of (57), we finally obtain 

' (58) R(o ) - ~ R g ~  + hg o = Kr(~) 

and 

R M = KrE01 (59) 

where R M is uniquely determined in terms of the holonomic components 
of the torsion tensor of U4 and its covariant derivative in view of  (36) (see 
Schouten, 1954, p. 144). 

Antisymmetric momentum-energy tensors do arise in practice. For a 
term in the matter Lagrangian of the form 

the covariant form of the momentum-energy tensor before minimal replace- 
ment is given by 

~It,yk( hk, OjXIt -- h 00kxl t)  

which is not symmetric in i, j. 
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7.  T H E  S P I N  E Q U A T I O N S  

We now turn to the field equations (46), which reduce to 

O i k A B i 
d { H ~ l z o } -  W r C f  ~ ^ {H~/z0} = (60) BbkLAM~BxI2 " /zi = J,~/zi 

because the G's all vanish. Here the J 's  denote the total spin currents of 
the matter fields. If  the indicated exterior derivative and product o n  the 
left-hand side of (60) are evaluated explicitly, the field equations become 

2(o in~  - W~[ C f  ~H~ j)  = J~ (61) 

When (48) is substituted into (42), the H ' s  are given by 

H ~ =  p i  j ~q klBl,~,bpbqh = k lBgkJL~ k (62) 

The H's  are thus the components of a skew-symmetric contravariant tensor 
densities on U4. Further, we see directly from (62) that 

T T 

VkH~ = 0, V,H~ = 0 (63) 

because each term on the right-hand side of (62) is covariant constant on 
/-/4. Now, direct expansion of the indicated covariant derivatives gives 

T 

ViHq=OiH q ~ ij i mj p j  7_7im -Fi~H~+2Ft~, . IH~ +~ti,,j** ~ =0  (64) 

and hence we have 

3 i H ~ -  u z v P  ~ u o _  pi  t_rim opi t_tmJ ,, i ~ , -  ~ - -~Ei , .~**  ~ - " ~ ' E i , , , l " *  ,~ ( 6 5 )  

when (15) is used. Accordingly, when the field equations (62) are used, the 
spin equations become equivalent to 

p j  Ll-im i mj 1 j ~ti,~l~*~ +2F~1H,~  = (66) 

Noting that 

Sjk i ~ i (67) = r [ j k ]  = ~ , j k b r  

is the torsion tensor of U4 in holonomic frames, (62), (56), and (66) combine 
to give 

k,. j i ' = ~ Y ~  (68) g (SimLak-2Sim B 

These are the final form for the spin equations in a/-/4 with Lagrangian 
(48). It follows directly from these equations that any one nonvanishing 
component of the spin current implies that U4 has nonvanishing torsion. 
Thus, in particular, U4 can reduce to a pseudo-Riemannian space only if 
all spin currents vanish throughout U4. In marked contrast with previously 
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published gauge theories for the Poincar6 group, the spin equations are 
seen to be a system of 24 algebraic rather than differential equations for 
the determination of the 24 independent components of the torsion tensor 
[see the Appendix for explicit solution of (68)]. Similar direct relations 
between torsion and spin quantities have surfaced in the past (Finkelstein, 
1960; Israel and Trollope, 1961; Finkelstein and Ramsy, 1962)in different 
contests, for they provide useful and direct interpretations of the intrinsic 
change in the space-time manifold that results from matter with spin degrees 
of freedom. 

The important thing to note here is that spin is adequately accounted 
for in terms of torsion even though the free field Lagrangian V does not 
depend on the torsion. We shall see in the next section that the coupling 
constant sc has the value of the gravitational coupling constant of general 
relativity and is thus quite small. The components of the torsion in the 
presence of nonzero spin currents are thus correspondingly small by (68), 
which probably accounts for the lack of experimental detection of torsion 
effects in physical space-time. 

8. GRAVITATION AND EVALUATION OF THE COUPLING 
CONSTANTS 

A Riemann-Cartan space reduces to a pseudo-Riemannian space only 
when the torsion tensor vanishes through the space. We have just seen, 
however, that the presence of any one nonzero component of the spin 
currents requires nonvanishing torsion, and hence the torsion can vanish 
only if the matter fields have spin currents that vanish everywhere. 

We also know that the Ricci tensor Rij of a pseudo-Riemannian space 
is symmetric. Thus, (60) shows that U4 can reduce to a pseudo-Riemannian 
space only if the total momentum-energy tensor is symmetric. Thus, 
necessary physical conditions for the reduction of U4 to a pseudo- 
Riemmanian space are 

~L,Jl = 0, J'~ -- 0 (69) 

The corresponding mathematical conditions are vanishing of all components 
of the Caftan torsion tensor, which we have seen can be achieved through 
an appropriate choice of the translation compensating fields (see II, 
Section 7). 

If these conditions are satisfied, the only surviving field equations are 

Rq -�89 + Agq = Krq (70) 

which are just Einstein's field equations with cosmological constant. The 
Einstein theory thus obtains exactly, and exactly in those circumstances in 
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which it was originally derived; namely, for matter fields with symmetric 
momentum-energy tensors and vanishing spin currents. 

We have only the one free field Lagrangian V given by (48), and hence 
it will be the same regardless of the form of the Lagrangian for the matter 
fields. If the matter field Lagrangian is such that the conditions (69) are 
satisfied, the only surviving field equations of the theory are Einstein's field 
equations for the gravitational field. Now, the constants K and )t in the 
Einstein field equations have specific values: )t is the cosmological constant 
whose value is potentially measurable from observations of very-large-scale 
distributions of matter, while K has the evaluation 8 Try/c 4 with y the ordinary 
constant of gravitation. When these evaluations are substituted into (56), 
we obtain 

--C 4 AC 4 

kl - 16~ry' k0 - 8Try (71) 

The coupling constants for the theory are thus fixed once and for all provided 
the free field Lagrangian B U  for the internal symmetry group of the matter 
fields is already known from the formulation of gauge theory for the internal 
symmetry group G on Minkowski space. 

When the physical conditions (69) are satisfied, the direct gauge theory 
for the Poincar6 group with Lagrangian (48) leads to a pseudo-Riemannian 
space whose geometric structure is determined by solving the Einstein field 
equations of general relativity. We have seen, however, that any space-time 
obtained by the direct Poincar6 gauge theory admits L(4, R) as its holonomy 
group. We therefore have the following important result. Any solution of 
the Einstein field equations gives a space-time whose holonomy group is 
the component of the Lorentz group that is continuously connected to the 
identity. 

The fundamental question of how to turn on gravity in a theory that 
is both mathematically and physically well posed on Minkowski space 
would appear to be answered by the results obtained here. In this regard, 
we take particular note that there are no adjustable constants floating around. 
The theory is thus closed whenever the total Lagrangian for the matter fields 
and compensating fields for the internal symmetry group is known on M4. 
Further, and of possibly greater importance, torsion and curvature effects 
in the theory are fully accounted for in terms of the field variables 

W7 and Bj (72) 

since the ~b's can be eliminated in favor of the B's through (1). Viewed 
from this perspective, curvature and torsion are first-order rather than 
second-order differential concomitants of the field variables and significant 
simplifications result. This situation is somewhat analogous to replacing the 
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second-order Klein-Gordon equation by the Dirac equations, for we have 
the transition from second-order equations in q~ in Einstein gravitational 
theory to first-order equations in the list (72). This formulation gives the 
system of field equations (70), where the Ricci tensor is now written in 
terms of the W's and B's, 

E~k = 0 (73) 

and six gauge conditions for the six W's, for a total of 40 independent 
equations for the 40 field variables (72) for spin-free matter with a symmetric 
momentum-energy tensor (i.e., in the classical gravitational setting). 

APPENDIX 

The purpose of this appendix is to obtain the explicit representation 
for the torsion tensor of U4 that is implied by the spin equations, (68). The 
first step is to define the auxiliary quantities 

r i kj L,~ 0 = L .  kg , L,~i~ = gikL.  k (A1) 

so that 

L~ (~ = 0, L~(o ) = 0 (A2) 

A straightforward calculation then shows that 

2L,~oC'~t3L~k,,, = 6 2  ~ - 6~ 6~  (A3) 

We now use (A1) to write (68) in the equivalent form 

BS~mL,~ ~'' = KJ~ + 2 B S ~ , , L ~  m (A4) 

When these relations are multiplied by C'~t~Lt3~r and summed on a, use of 
(A3) leads to the evaluations 

SSJr  = -- KJJa Ca 'S  Lflkr - a ( Sik 3 2 -  Sir 6Jk ) (A5) 

Thus, a contraction on j and k gives 

i i aS  
2 B S i r  = K J ~ C  Li3ir (A6)  

and hence (A5) gives the desired solution 

BSJkr = KCa~ ( L ~ k  r tsj + j i L,i[g ~ r])J~ (A7) 

The explicit solution given by (A7) shows that the torsion of U4 is 
nonzero only at those space-time points where the spin currents are nonzero. 
Thus, torsion does not propagate in space-time, and any region of U4 for 
which the spin currents  vanish is a pseudo-Riemannian region. 
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